logo

Главная Цепи смещения транзисторных каскадов Порядок расчета цепей смещения Исходные данные для проведения расчетов

Порядок расчета цепей смещения биполярных транзисторов: Исходные данные для проведения расчетов

Печать
Схемотехника - Схемотехника и конструирование схем

 

В предыдущих разделах мы представили и теоретически обосновали достаточно много способов схемотехнической реализации цепей смещения (т.е. способов задания и стабилизации исходной рабочей точки по постоянному току) в каскадах с биполярными транзисторами. Однако для практического использования при самостоятельной разработке электронных схем такой вид подачи информации явно неудобен. Более полезным оказывается иметь в своем распоряжении четкие правила, описывающие по шагам порядок действий разработчика (не менее важным представляется наличие окончательных формул или таблиц, из которых при подстановке известных справочных данных можно получить все необходимые значения для параметров и номиналов применяемых компонентов).

Сразу отметим, что само по себе наличие указанных правил не обеспечивает гарантированный успех при практической разработке разнообразной аппаратуры. Разработчик по-прежнему должен очень четко понимать суть всех процессов, происходящих в цепях, и по мере надобности обращаться к теории. В приложении к рассматриваемой здесь задаче расчета цепей смещения это выражается в следующем.

Умение правильно рассчитать номиналы элементов цепей смещения ни в коей мере не помогает в процессе выбора самого способа схемотехнической реализации этих цепей смещения. Т.е. мы приводим здесь только алгоритмы и формулы, позволяющие выбрать номиналы элементов в разнообразных схемах задания смещения, но обходим стороной вопрос — в каком случае применение той или иной схемы является оправданным (оптимальным).

Заметим также, что в реальных усилительных устройствах цепи задания и стабилизации исходной рабочей точки по постоянному току могут в довольно причудливой форме переплетаться с цепями, оказывающими влияние только на переменные сигналы. Поэтому следует понимать, что все приводимые здесь схемы (даже и те, в которых указаны номиналы элементов) на практике обычно видоизменяются, дополняясь множеством компонентов, обеспечивающих их надлежащие характеристики в рабочем диапазоне частот. В следующем разделе мы вернемся к этому вопросу и приведем некоторые примеры реальных схем, тем не менее читатель должен иметь достаточно четкое представление о том, какое влияние на постоянные и переменные токи и напряжения оказывают различные электрические цепи. В этом случае проблем с применением описываемых в данном разделе схем смещения в реальных транзисторных усилителях возникать не должно.

 

Исходные данные для проведения расчетов

В качестве исходных данных при расчете цепей смещения транзисторных каскадов в общем случае могут выступать различные наборы параметров. Мы не будем пытаться охватить абсолютно все случаи, а ограничимся только одним, имеющим наибольшее распространение на практике.

Итак, в первую очередь разработчик должен однозначно определиться с типономиналом применяемого в схеме транзистора. Более того, в некоторых случаях необходимо определиться даже с конкретным экземпляром прибора, поскольку в рамках одной серии может существовать существенный разброс параметров, влияющих на номиналы элементов в цепях смещения. Параллельно выбирается режим работы транзистора по постоянному току (т.е. определяется положение исходной рабочей точки).

Выше мы нарисовали очень красивые графики, в которых исходная рабочая точка выбиралась при графическом анализе статических характеристик транзистора. Однако на практике в большинстве случаев у нас нет всех этих характеристик, поскольку они не приводятся в стандартных справочных данных на транзистор. Конечно, мы могли бы снять их экспериментально, но обычно можно воспользоваться другим методом. В большинстве справочников при описании параметров транзисторов приводятся значения для постоянных составляющих тока коллектора \({I_К}_0\) (или тока эмиттера \({I_Э}_0\)) и напряжения коллектор—эмиттер \({U_{КЭ}}_0\), которые соответствуют оптимальному режиму работы транзистора по какому-либо из параметров, характеризующих его усилительные свойства (минимальный коэффициент шума, максимальный коэффициент усиления по мощности, максимальный коэффициент передачи тока эмиттера и т.п.). Иногда оптимальные значения \({I_К}_0\) и \({U_{КЭ}}_0\) могут быть найдены из графиков зависимостей, связывающих различные параметры транзистора, которые также часто имеются в справочниках. Разработчику обычно остается только определиться с тем, какие из усилительных характеристик транзистора он считает наиболее важными и соответствующим образом выбрать конкретные величины \({I_К}_0\) и \({U_{КЭ}}_0\).

Безусловно, встречаются ситуации, когда необходимо учитывать очень большое количество факторов и процесс выбора исходной рабочей точки по постоянному току выглядит гораздо сложнее. С другой стороны, бывает и так, что рабочую точку выбирают, просто разделив пополам параметры предельно допустимого режима выбранного транзистора (это особенно популярно в низкочастотных усилителях при высоких уровнях сигналов). Так или иначе, мы будем предполагать, что конкретные величины \({I_К}_0\) и \({U_{КЭ}}_0\) нам известны.

Помимо параметров коллекторной цепи для расчета некоторых схем смещения может понадобиться и знание постоянной составляющей напряжения на переходе база—эмиттер транзистора \({U_{БЭ}}_0\). Эта величина также берется из справочных данных или находится по входным характеристикам транзистора. Если же ее не удается определить по справочнику, то не будет большой ошибкой для маломощных транзисторов принимать \({U_{БЭ}}_0 = {0,6...1,1 В}\) — для кремниевых транзисторов и \({U_{БЭ}}_0 = {0,2...0,6 В}\) — для германиевых транзисторов.

При разработке электронных устройств важным вопросом является обеспечение правильного питания. Тут возможны различные методики работы. По одной из них все параметры цепей питания определяются после расчета основных каскадов и подгоняются под них. Однако на практике обычно используется несколько иной способ. А именно, напряжение источника питания задается еще на начальном этапе (в большинстве случаев это не вызывает никаких проблем), а расчет остальных каскадов производится уже исходя из этой заданной величины. Остается только отследить соответствие мощности потребления схемы возможностям использованного источника питания. Мы будем придерживаться второй более практичной методики, т.е. \(U_П\) во всех случаях полагается известным.

Одним из важнейших параметров транзистора является статический коэффициент передачи тока базы \(\beta_{СТ}\). Суть этого параметра мы уже объясняли достаточно подробно в разделе 2.5. Здесь же отметим, что большинство транзисторов может иметь довольно широкий разброс значений \(\beta_{СТ}\) внутри одной серии (партии). Т.е. для точного расчета цепей смещения может оказаться недостаточным наличие очень расплывчатых справочных данных (в справочниках обычно указывается диапазон возможных значений \(\beta_{СТ}\) для определенного транзистора в определенном режиме) — требуется экспериментальное измерение данного параметра для конкретного экземпляра транзистора, использование которого предполагается в схеме. Однако следует понимать, что необходимость таких измерений продиктована не только наличием в некоторых формулах величины \(\beta_{СТ}\), но и тем влиянием, которое эта величина оказывает на результат вычислений. Выяснить степень данного влияния на практике проще всего непосредственным вычислением, подставляя в формулу различные (вероятные для используемого транзистора) значения \(\beta_{СТ}\) и проверяя, насколько при этом меняется результат. Если изменение результата относительно невелико, то и в точном измерении \(\beta_{СТ}\) нет необходимости — можно обойтись справочными данными (в справочниках часто приводится т.н. типовое значение \(\beta_{СТ}\), если же его нет, то берут среднее значение приведенного диапазона). Еще раз обращаем внимание читателя на то, что речь здесь идет именно о статическом коэффициенте передачи \(\beta_{СТ}\) (в системе статических \(H\)-параметров он может обозначаться как \(h_{21Э}\)), а не о коэффициенте передачи тока базы в режиме малого сигнала (\(\beta\) или \(h_{21э}\)), значения которого также часто указываются в справочной документации на транзисторы. У большинства современных маломощных биполярных транзисторов величина \(\beta_{СТ}\) лежит в пределах 50...250, так что довольно часто при проведении расчетов не будет ошибкой принимать \(\beta_{СТ} \approx {100}\).

Далее при рассмотрении конкретных схем мы столкнемся с необходимостью предварительного (до начала расчетов) задания и еще некоторых величин. Причем не всегда эти величины могут быть выражены в цифрах.

Например, нам может понадобиться знание глубины обратной связи по току или напряжению, реализовать которую мы намереваемся в каскаде. Напомним, что обратная связь позволяет улучшить стабильность исходной рабочей точки по постоянному току при воздействии внешних дестабилизирующих факторов. Учитывая, что реальный транзистор — прибор в значительной степени нелинейный, а также помня о влиянии цепей обратной связи по постоянному току на сигналы и параметры каскада в рабочей полосе частот, мы не можем в рамках данной главы описать критерии, по которым разработчик должен выбирать точную величину глубины внутрикаскадных ООС в различных ситуациях. Вообще говоря, и во всей данной книге недостаточно информации для полного решения этого вопроса (не хватает подробного описания нелинейных свойств транзисторов). Поэтому в дальнейшем при проведении расчетов мы будем полагать, что требуемая глубина ООС заранее известна, а в то, откуда она взялась, вникать не будем.

Большой выбор схем при реализации цепей смещения обусловлен наличием множества внешних факторов, которые в различных устройствах могут учитываться по-разному и иметь значительный разброс по степени важности их учета разработчиком. Одним из основных таких показателей является температурная стабильность каскада. Для оценки этого параметра применяется т.н. коэффициент нестабильности тока коллектора \({S_I}_К\), который определяется как отношение допустимого изменения коллекторного тока транзистора \(\Delta {I_К}_0\) к вызвавшему его изменению обратного тока коллекторного перехода \(\Delta I_{КБ обр}\):

\({S_I}_К = \cfrac{\Delta {I_К}_0}{\Delta I_{КБ обр}}\).

Здесь следует заметить, что обратный ток коллектора — один из наиболее температурно-зависимых параметров транзистора. Именно его колебания во многом определяют температурные изменения статических характеристик транзистора, показанные на рис. 3.16. Таким образом, коэффициент нестабильности отражает степень смещения исходной рабочей точки по постоянному току (вернее, только одного из показателей, задающих эту рабочую точку, — тока коллектора) при колебаниях температуры. Чем более устойчива схема к колебаниям температуры, тем ближе к единице оказывается коэффициент нестабильности \({S_I}_К\).

Иногда при проектировании схемы обеспечение надлежащей температурной стабильности является одним из основных требований. Это может выражаться в задании некоторого числового значения коэффициента нестабильности, которому должна удовлетворять схема (т.е. \({S_I}_К\) становится одним из исходных параметров расчетов). Не всегда удается достичь заданного показателя только лишь правильным выбором номиналов элементов (тем не менее там, где это возможно, пригодятся приводимые далее формулы) — может оказаться, что выбранная схема цепей смещения не обеспечивает нужного уровня температурной стабилизации рабочей точки или при вычисленных номиналах элементов значительно (выше разумного предела) деградируют другие важные показатели каскада (потребляемый ток, входное сопротивление и т.п.). В таком случае разработчику необходимо изменять схемотехнику цепей смещения, переходя к использованию более стабильных решений. Мы везде будем приводить формулы, позволяющие вычислить коэффициент нестабильности \({S_I}_К\) рассматриваемой схемы при известных номиналах некоторых ее элементов.

Перед тем как перейти наконец к описанию конкретных схем и методик расчета, отметим еще один момент, касающийся воплощения полученных результатов на практике. Естественно, что числовые значения номиналов резисторов, рассчитываемые по приводимым далее формулам, оказываются дробными. На практике мы вынуждены использовать сопротивления с номиналами, близкими к расчетным. Также и сама теоретическая модель, из которой выводятся формулы, не всегда достаточно точно отражает реальные физические процессы в транзисторе. Все это приводит к тому, что при практическом исполнении вроде бы корректно рассчитанной схемы реальные токи и напряжения в цепях могут значительно отклониться от тех значений, которые мы хотели бы там видеть. В этом случае требуется экспериментальный подбор номиналов некоторых элементов схемы. Далее на принципиальных схемах мы будем указывать резисторы (звездочкой у обозначения резистора), подбором которых осуществляется точная установка выбранной исходной рабочей точки по постоянному току. В реальных устройствах иногда оказывается удобным вместо подбора резистора установить на его место подстроечный резистор и осуществлять регулировку без перепайки. Пунктирная линия на наших схемах будет указывать на параметр (в данном случае это везде ток коллектора \({I_К}_0\)), который устанавливается регулировкой данного резистора.

 

 

 

Конструирование схем





Все права защищены © Алексей Ровдо, 1994-2023. Перепечатка возможна только по согласованию с владельцем авторских прав. admin@club155.ru

Top.Mail.Ru       Сервер радиолюбителей России - схемы, документация,

 соревнования, дипломы, программы, форумы и многое другое!   схемы новости электроники