Выпрямительные диоды: Общая информация, конструктивные особенности и особенности вольт-амперных характеристик |
Схемотехника - Схемотехника и конструирование схем | |||
Выпрямительные диоды применяются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в источниках питания для преобразования (выпрямления) переменного напряжения в постоянное, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. В зависимости от значения максимального выпрямляемого тока различают выпрямительные диоды малой мощности (\(I_{пр max} \le {0,3 А}\)), средней мощности (\({0,3 А} < I_{пр max} \le {10 А}\)) и большой мощности (\(I_{пр max} > {10 А}\)). Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом, диоды средней и большой мощности должны располагаться на специальных теплоотводящих радиаторах, что предусматривается в т.ч. и соответствующей конструкцией их корпусов. Обычно, допустимая плотность тока, проходящего через \(p\)-\(n\)-переход, не превышает 2 А/мм2, поэтому для получения указанных выше значений среднего выпрямленного тока в выпрямительных диодах используют плоскостные \(p\)-\(n\)-переходы. Такие переходы имеют существенную емкость, что ограничивает максимальную допустимую рабочую частоту (\(f_р\)) выпрямительных диодов. Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе. Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Поэтому диоды обладают односторонней проводимостью, что позволяет использовать их в качестве выпрямительных элементов. Вольт-амперные характеристики (ВАХ) германиевых и кремниевых диодов различаются. На рис. 2.3‑1 для сравнения показаны типичные ВАХ для германиевых и кремниевых выпрямительных диодов при различных температурах окружающей среды.
Рис. 2.3-1. Вольт-амперные характеристики выпрямительных диодов при различных температурах окружающей среды
По приведенным ВАХ видно, что обратный ток кремниевых диодов значительно меньше обратного тока германиевых диодов. Кроме того, обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет явно выраженного участка насыщения, что обусловлено генерацией носителей зарядов в \(p\)-\(n\)-переходе и токами утечки по поверхности кристалла. При подаче обратного напряжения превышающего некий пороговый уровень происходит резкое увеличение обратного тока, что может привести к пробою \(p\)-\(n\)-перехода. У германиевых диодов, вследствие большой величины обратного тока, пробой имеет тепловой характер. У кремниевых диодов вероятность теплового пробоя мала, у них преобладает электрический пробой. Пробой кремниевых диодов имеет лавинный характер, поэтому у них, в отличие от германиевых диодов, пробивное напряжение повышается с увеличением температуры. Допустимое обратное напряжение кремниевых диодов (до 1600 В) значительно превосходит аналогичный параметр германиевых диодов. Обратные токи в значительной степени зависят от температуры перехода. Из рисунка видно, что с ростом температуры обратный ток возрастает. Для приближенной оценки можно считать, что с увеличением температуры на 10 °С обратный ток германиевых диодов возрастает в 2, а кремниевых — в 2,5 раза. Верхний предел диапазона рабочих температур германиевых диодов составляет 75...80 °С, а кремниевых — 125 °С. Существенным недостатком германиевых диодов является их высокая чувствительность к кратковременным импульсным перегрузкам. Вследствие меньшего обратного тока кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому мощность, рассеиваемая при одинаковых токах, в германиевых диодах меньше, чем в кремниевых. Прямое напряжение при малых прямых токах, когда преобладает падение напряжения на переходе, с ростом температуры уменьшается. При больших токах, когда преобладает падение напряжения на сопротивлении нейтральных областей полупроводника, зависимость прямого напряжения от температуры становится положительной. Точка, в которой отсутствует зависимость прямого напряжения от температуры (т.е. эта зависимость меняет знак), называется точкой инверсии. У большинства диодов малой и средней мощности допустимый прямой ток, как правило, не превышает точки инверсии, а у мощных диодов допустимый ток может быть выше этой точки.
|
Все права защищены © Алексей Ровдо, 1994-2023. Перепечатка возможна только по согласованию с владельцем авторских прав. admin@club155.ru