Вторник 02 Сентябрь 2014 (GMT+0400)

Главная Полупроводниковые приборы Полевые транзисторы (ПТ) Режимы и схемы включения ПТ
Режимы работы и схемы включения полевых транзисторов Печать
Схемотехника - Конструирование схем

 

Анализируя возможность использования полевых транзисторов для усиления электрических сигналов мы ограничивались только одним частным случаем подачи на электроды транзистора определенных напряжений и не рассматривали некоторые достаточно важные физические процессы в полупроводниках. Но помимо уже описанной ситуации возможны и другие, приводящие, например, к протеканию в канале тока не от истока к стоку, а наоборот — от стока к истоку и т.п.

В общем случае для полевого транзистора, так же как и для биполярного, возможны различные устойчивые состояния (режимы работы). Они отличаются друг от друга тем, в каком состоянии находится канал, соединяющий исток и сток транзистора, а также направлением тока, протекающего в канале. В полевых транзисторах дополнительно принято классифицировать также режим воздействия затвора на канал (стимулирует или подавляет протекание тока в нем).

Ниже при описании режимов работы полевых транзисторов мы применим ту же терминологию, какая используется для биполярных транзисторов. Однако следует понимать, что в полевых транзисторах физические процессы протекают иначе и зачастую нельзя однозначно утверждать, что транзистор находится в таком-то режиме без некоторых уточнений. Например, в нашей транскрипции активный режим и режим насыщения могут существовать одновременно независимо друг от друга.

 

Активный режим — соответствует случаям, рассмотренным при анализе усилительных свойств полевых транзисторов. Именно в активном режиме транзистор наилучшим образом проявляет свои усилительные свойства. Часто такой режим называюют основным, усилительным или нормальным (на усилительные свойства полевого транзистора также оказывает влияние состояние канала, а именно находится ли он в режиме насыщения — см. ниже). При рассмотрении полевых транзисторов мы практически всегда (за исключением ключевых схем) имеем дело с активным режимом, но здесь имеется одна тонкость, о которой также часто говорят как о режиме работы транзистора (или как о режиме работы затвора). В различных видах полевых транзисторов и при различных внешних напряжениях затвор может оказывать два вида воздействий на канал: в первом случае (например, в полевых транзисторах с управляющим \(p\)-\(n\)-переходом при напряжениях на электродах, соответствующих рис. 2-1.5) он препятствует протеканию тока через канал, уменьшая число носителей зарядов, проходящих через него (такой режим называют режимом обеднения канала), во втором случае (например, в МДП-транзисторах с индуцированным каналом, включенных в соответствии с рис. 2-1.7) затвор, наоборот, стимулирует протекание тока через канал, увеличивая число носителей зарядов в потоке (режим обогащения канала). Часто просто говорят о режиме обеднения и режиме обогащения. Заметим, что МДП-транзисторы с индуцированным каналом могут находиться в активном режиме только в случае режима обогащения канала, а для МДП-транзисторов со встроенным каналом это может быть и режим обогащения, и режим обеднения. В полевых транзисторах с управляющим \(p\)-\(n\)-переходом попытка приложить прямое смещение на этот переход вызывает его открытие и протекание существенного тока в цепи затвора. Реальные процессы в транзисторе в этом случае сильно зависят от его конструкции, практически никогда не документируются и трудно предсказуемы. Поэтому говорить о режиме обогащения для полевых транзисторов с управляющим переходом не принято да и просто бессмысленно.

Инверсный режим — по процессам в канале противоположен активному режиму, т.е. поток носителей зарядов в канале протекает не от истока к стоку, а наоборот — от стока к истоку. Для инверсного режима требуется только изменение полярности напряжения на канале, полярность напряжения на затворе остается неизменной. В таком режиме транзистор также может использоваться для усиления. Обычно из-за конструктивных различий между областями стока и истока усилительные свойства транзистора в инверсном режиме проявляются хуже, чем в режиме активном. Впрочем, в некоторых видах МДП-транзисторов конструктивная ассиметрия минимальна, что приводит к симметричности выходных статических характеристик такого транзистора относительно изменения полярности напряжения сток—исток. Данный режим практически никогда не используется в усилительных схемах, но для аналоговых переключателей на полевых транзисторах он оказывается полезен. Однако здесь есть одна ловушка, в которую довольно легко попасть начинающему. Дело в том, что в большинстве МДП-транзисторов (особенно в мощных) производители соединяют подложку с истоком внутри корпуса прибора, что фактически означает, что в этих транзисторах между истоком и стоком имеется диод который не позволяет подавать на переход исток—сток инверсное напряжение, превышающее прямое падение напряжения на этом диоде, т.е. инверсный режим в таком транзисторе попросту невозможен. Вообще, в случае полевых транзисторов о режиме работы вспоминают гораздо реже, чем для биполярных. Дело здесь в том, что каждый конкретный тип полевого транзистора имеет конструкцию строго ориентированную на выполнение какой-то конкретной функции (усиление слабых сигналов, ключ и т.п.), все документируемые параметры транзистора в этом случае характеризуют его работу именно в основном режиме при выполнении предназначенной функции. Поэтому имеет смысл говорить просто о нормальном режиме работы, когда все соответствует документации, или о ненормальном, который в документации просто не предусмотрен (да и вряд ли кому-то понадобиться использовать его в схемах).

Режим насыщения — характеризует состояние не всего транзистора в целом, как это было для биполярных приборов, а только токопроводящего канала между истоком и стоком. Данный режим соответствует насыщению канала основными носителями зарядов. Такое явление как насыщение является одним из важнейших физических свойств полупроводников. Оказывается, что при приложении внешнего напряжения к полупроводниковому каналу, ток в нем линейно зависит от этого напряжения лишь до определенного предела (напряжение насыщения), а по достижении этого предела стабилизируется и остается практически неизменным вплоть до пробоя структуры. В приложении к полевым транзисторам это означает, что при превышении напряжением сток—исток некоторого порогового уровня оно перестает влиять на ток в цепи. Если для биполярных транзисторов режим насыщения означал полную потерю усилительных свойств, то для полевых это не так. Здесь наоборот, насыщение канала приводит к повышению коэффициента усиления и уменьшению нелинейных искажений. До достижения напряжением сток—исток уровня насыщения ток через канал линейно увеличивается с ростом напряжения (т.е. ведет себя так же, как и в обычном резисторе). Автору неизвестно какого-либо устоявшегося названия для такого состояния полевого транзистора (когда ток через канал идет, но канал ненасыщен), будем называть его режимом ненасыщенного канала (он находит применение в аналоговых ключах на полевых транзисторах). Режим насыщения канала обычно является нормальным при включении полевого транзистора в усилительные цепи, поэтому в дальнейшем при рассмотрении работы транзисторов в схемах мы не будем делать особого акцента на этом, подразумевая, что между стоком и истоком транзистора присутствует напряжение, достаточное для насыщения канала.

Режим отсечки — режим, в котором ток через канал полевого транзистора не протекает. Переход полевого транзистора в режим отсечки происходит по достижении напряжением на затворе определенного порога (напряжение отсечки). В полевых транзисторах с управляющим \(p\)-\(n\)-переходом это имеет место при постепенном увеличении обратного смещения на перереходе, а в МДП-транзисторах со встроенным каналом при увеличении разности потенциалов между истоком и затвором при условии работы в режиме обеднения канала. В МДП-транзисторах с индуцированным каналом режим отсечки имеет место при нулевой разности напряжений между истоком и затвором, а по достижении напряжения отсечки (или порогового напряжения) канал открывается. Поскольку выходной ток транзистора в режиме отсечки практически равен нулю, он используется в ключевых схемах и соответвует размыканию транзисторного ключа.

Помимо режима работы для эксплуатации полевых транзисторов имеет значение то, каким образом транзистор включен в каскад усиления (как поданы питающие напряжения на его электроды, в какие цепи включены нагрузка и источник сигнала). Так же как и для биполярных транзисторов, здесь различают три основных способа (рис. 2-1.8): схема с общим истоком (ОИ), схема с общим стоком (ОС) и схема с общим затвором (ОЗ).

 

Рис. 2-1.8. Схемы включения полевых транзисторов (направления токов соответствуют активному режиму работы)

 

Для полевых транзисторов полностью сохраняется понятие класса усиления в том же виде, в каком оно описано в подразделе Классы усиления для биполярных транзисторов. Отличие лишь в том, что критерием нахождения транзистора в режиме усиления здесь служит наличие потока зарядов через канал от истока к стоку.

 

 

 

Конструирование схем











Все права защищены © 1997-2011 Перепечатка возможна только по согласованию с владельцем авторских прав. admin@club155.ru

            Сервер радиолюбителей России - схемы, документация,
 соревнования, дипломы, программы, форумы и многое другое!   схемы новости электроники