logo

Главная Цифро-импульсные узлы и коммутаторы Цифро-импульсные узлы

Диоды в комбинированных цифро-импульсных узлах

Печать
Схемотехника - Схемотехника и конструирование схем

 

Кроме описанных выше диодных схем в современной схемотехнике находят широкое применение различные импульсные устройства, построенные на основе биполярных и полевых транзисторов, а также цифровых микросхем. Несмотря на то, что основным коммутирующим элементом этих схем выступает транзистор (или логический элемент микросхемы), диоды могут играть в них вспомогательную роль, обеспечивая коммутацию дополнительных цепей улучшающих характеристики узлов. Пример диодно-транзисторной ключевой схемы приведен на рис. 3.1-10.

 

Импульсный усилитель мощности с замыкающим диодом

Рис. 3.1-10. Импульсный усилитель мощности с замыкающим диодом

 

Это импульсный усилитель мощности, который обеспечивает коммутацию активно-индуктивной нагрузки. Здесь специальный шунтирующий диод \(VD1\) фактически превращает последовательную транзисторную схему коммутации в последовательно-параллельную. Через него протекает ток дросселя на интервале времени, когда транзистор закрыт, т.е. независимо от состояния транзисторного ключа постоянно существует цепь для протекания тока нагрузки, что принципиально необходимо для нормального функционирования нагрузок, содержащих индуктивность.

В традиционные схемы транзисторных ключей диоды часто вводятся не только для обеспечения дополнительной коммутации (как это было описано выше). Благодаря своим ограничительным свойствам (см. Диодные ограничители в составе различных узлов аппаратуры) они могут использоваться для улучшения характеристик быстродействия этих ключей. Дело в том, что существенную долю времени выключения биполярного транзистора, особенно при пассивном запирании, составляет время его рассасывания.

Для исключения этого временного интервала необходимо предотвратить переход транзистора в состояние глубокого насыщения, что может быть достигнуто путем фиксации минимального напряжения коллекторного перехода транзистора. Такое решение реализовано в схеме на рис. 3.1‑11.

 

Схема ненасыщенного ключа на биполярном транзисторе с фиксацией напряжения коллектор-база с помощью диода и базового резистора

Рис. 3.1-11. Схема ненасыщенного ключа на биполярном транзисторе с фиксацией напряжения \(U_{КБ}\) с помощью диода и базового резистора

 

Если в схеме на рис. 3.1-11 вместо обычного кремниевого диода использовать диод Шоттки, имеющий малое падение напряжения в проводящем состоянии, то резистор \(R_б\) может быть исключен, а схема преобразуется в представленную на рис. 3.1-12(а).

Такая схема нашла широчайшее применение в цифровых ИС (логика ТТЛШ), где диод Шоттки и транзистор сразу выполняются совмещенными, благодаря особой компоновке полупроводниковой структуры, в которой металлический вывод базы дополнительно имеет контакт и с коллекторной областью, образуя дополнительный переход Шоттки.

Изготовленный описанным образом интегральный элемент принято называть биполярным транзистором Шоттки (Schottky-clamped transistor) или просто транзистором Шоттки (не путать с Полевым транзистором Шоттки) и обозначать как показано на рис. 3.1-12(б).

 

Транзисторно-диодный ключ с диодом Шоттки (а) и биполярный транзистор Шоттки (б)

Рис. 3.1-12. Транзисторно-диодный ключ с диодом Шоттки (а) и биполярный транзистор Шоттки (б)

 

Иногда для исключения накопления избыточного заряда в базовой области биполярного транзистора, вместо напряжения \(U_{КБ}\) фиксируется напряжение \(U_{КЭ}\). При этом используется схема, приведенная на рис. 3.1-13, в которой между выводами эмиттера и коллектора транзистора включены последовательно соединенные диод и источник фиксирующего напряжения. Однако из-за значительного технологического разброса параметров транзисторов величина \(U_{фикс}\) должна выбираться с достаточным запасом, что ведет к большому остаточному напряжению на замкнутом ключе.

 

Схема ненасыщенного ключа на биполярном транзисторе с фиксацией напряжения коллектор-эмиттер с помощью диода и дополнительного напряжения фиксации

Рис. 3.1-13. Схема ненасыщенного ключа на биполярном транзисторе с фиксацией напряжения \(U_{КЭ}\) с помощью диода и дополнительного напряжения фиксации

 

При применении в усилителях мощности схема на рис. 3.1‑13 вырождается и сводится к прямому шунтированию транзистора обратным диодом. Такое включение транзисторов обычно называют “стойкой” (пример на рис. 3.1-14).

 

Импульсный усилитель мощности с включающим и замыкающим ключами

Рис. 3.1-14. Импульсный усилитель мощности с включающим и замыкающим ключами

 

На рис. 3.1-15 представлена простая схема, демонстрирующая возможный вариант использования диодно-емкостной цепочки в в сочетании с цифровым логическим элементом ТТЛ и предназначенная для задержки фронта импульса.

 

Схема задержки фронта импульса (а) и временные диаграммы, поясняющие ее работу (б)

Рис. 3.1-15. Схема задержки фронта импульса (а) и временны'е диаграммы, поясняющие ее работу (б)

 

В исходном состоянии, когда на вход схемы подан сигнал логического нуля, диод \(VD1\) открыт, а на конденсаторе \(C1\) поддерживается напряжение равное падению напряжения на прямосмещенном диоде \(VD1\) (это происходит из-за особенностей внутренней схемотехники логического элемнта ТТЛ). При поступлении на вход устройства сигнала логической единицы диод \(VD1\) сразу же закрывается, а конденсатор \(C1\) начинает медленно подзаряжаться за счет тока, протекающего через эмиттерный переход входного транзистора ТТЛ элемента. Когда напряжение на конденсаторе превысит порог срабатывания логического элемента, на выходе появится инвертированный задержанный фронт входного импульса. При прохождении среза вход снова замкнется на общий провод, а конденсатор \(C1\) за очень короткое время (учитывая малое выходное сопротивление типового элемента ТТЛ, с которого поступает импульсный сигнал) разрядится через диод \(VD1\), и устройство перейдет в исходное состояние.

Если необходимо задержать не фронт, а срез имипульса достаточно подать на описанную схему предварительно проинвертированный сигнал. Тогда на ее выходе будет получен исходный сигнал (а не его инверсия) с задержанными срезами импульсов. Для задержки всего импульса требуется использовать два одинаковых каскада (рис. 3.1-16), один из которых отвечает за задержку фронта, а другой — среза (здесь также на выходе будет получен неинвертированный задержанный сигнал).

 

Схема задержки импульса (а) и временные диаграммы, поясняющие ее работу (б)

Рис. 3.1-16. Схема задержки импульса (а) и временны'е диаграммы, поясняющие ее работу (б)

 

Недостатком такого устройства является то, что оно способно нормально обрабатывать только импульсы, длительность которых не меньше времени задержки.

Описанный простейший узел задержки фронта импульса может быть использован и в составе различных формирователей. Например, на его базе может быть построена схема формирования импульсов заданной длительности (рис. 3.1-17). В этой схеме на один вход логического элемента 2И-НЕ исходный сигнал подается непосредственно, а на другой — с задержкой фронта и с инверсией. Выходным сигналом является импульс логического нуля, длительность которого равна времени задержки фронта входного импульса.

Включив на выходе такого формирователя интегрирующую цепь, которая будет выделять постоянную составляющую импульсного сигнала, можно получить простейший преобразователь частота – напряжение (принцип работы преобразователя заключается в том, что постоянная составляющая периодического импульсного сигнала обратно пропорциональна скважности этого сигнала, а следовательно, при постоянной длительности прямо пропорциональна частоте).

 

Формирователь импульсов заданной длительности

Рис. 3.1-17. Формирователь импульсов заданной длительности

 

Два других примера применения схемы задержки — автоколебательный (рис. 3.1-18) и ждущий (рис. 3.1-19) мультивибраторы.

 

Автоколебательный мультивибратор

Рис. 3.1-18. Автоколебательный мультивибратор

 

Ждущий мультивибратор

Рис. 3.1-19. Ждущий мультивибратор

 

 

 



Все права защищены © 1997-2011 Перепечатка возможна только по согласованию с владельцем авторских прав. admin@club155.ru

Яндекс.Метрика               Сервер радиолюбителей России - схемы, документация,

 соревнования, дипломы, программы, форумы и многое другое!   схемы новости электроники